24 research outputs found

    Role of Multichance Fission in the Description of Fission-Fragment Mass Distributions at High Energies

    Get PDF
    Fission-fragment mass distributions were measured for U237-240, Np239-242, and Pu241-244 populated in the excitation-energy range from 10 to 60 MeV by multinucleon transfer channels in the reaction O18+U238 at the Japan Atomic Energy Agency tandem facility. Among them, the data for U240 and Np240,241,242 were observed for the first time. It was found that the mass distributions for all the studied nuclides maintain a double-humped shape up to the highest measured energy in contrast to expectations of predominantly symmetric fission due to the washing out of nuclear shell effects. From a comparison with the dynamical calculation based on the fluctuation-dissipation model, this behavior of the mass distributions was unambiguously attributed to the effect of multichance fission

    Inhibition of bone erosion, determined by high-resolution peripheral quantitative computed tomography (HR-pQCT), in rheumatoid arthritis patients receiving a conventional synthetic disease-modifying anti-rheumatic drug (csDMARD) plus denosumab vs csDMARD therapy alone: an open-label, randomized, parallel-group study

    Get PDF
    Background: This exploratory study compared the inhibition of bone erosion progression in rheumatoid arthritis (RA) patients treated with a conventional synthetic disease-modifying anti-rheumatic drug (csDMARD) plus denosumab versus csDMARD therapy alone and investigated the effects of denosumab on bone micro-architecture and other bone-related parameters using high-resolution peripheral quantitative computed tomography (HR-pQCT).Methods: In this open-label, randomized, parallel-group study, patients with RA undergoing treatment with a csDMARD were randomly assigned (1:1) to continue csDMARD therapy alone or to continue csDMARDs with denosumab (60-mg subcutaneous injection once every 6 months) for 12 months. The primary endpoint was the change from baseline in the depth of bone erosion, measured by HR-pQCT, in the second and third metacarpal heads at 6 months after starting treatment. Exploratory endpoints were also evaluated, and adverse events (AEs) were monitored for safety.Results: In total, 46 patients were enrolled, and 43 were included in the full analysis set (csDMARDs plus denosumab, N = 21; csDMARD therapy alone, N = 22). Most patients were female (88.4%), and the mean age was 65.3 years. The adjusted mean (95% confidence interval) change from baseline in the depth of bone erosion, measured by HR-pQCT, in the 2–3 metacarpal heads at 6 months was − 0.57 mm (− 1.52, 0.39 mm) in the csDMARDs plus denosumab group vs − 0.22 mm (− 0.97, 0.53 mm) in the csDMARD therapy alone group (between-group difference: − 0.35 mm [− 1.00, 0.31]; P = 0.2716). Similar results were shown for the adjusted mean between-group difference in the width and volume of bone erosion of the 2–3 metacarpal heads. Significant improvements in bone micro-architecture parameters were shown. The incidence of AEs and serious AEs was similar between the csDMARDs plus denosumab and the csDMARD therapy alone groups (AEs: 52.2% vs 56.5%; serious AEs: 4.3% vs 8.7%).Conclusions: Although the addition of denosumab to csDMARDs did not find statistically significant improvements in bone erosion after 6 months of treatment, numerical improvements in these parameters suggest that the addition of denosumab to csDMARDs may be effective in inhibiting the progression of bone erosion and improving bone micro-architecture

    Effects of monthly intravenous ibandronate on bone mineral density and microstructure in patients with primary osteoporosis after teriparatide treatment: The MONUMENT study

    Get PDF
    Purpose: To investigate the effects of sequential therapy with monthly intravenous ibandronate on bone mineral density (BMD) and microstructure in patients with primary osteoporosis who received teriparatide treatment. Methods: Sixty-six patients with primary osteoporosis who had undergone teriparatide treatment for more than 12 months (mean 18.6 months) received sequential therapy with 1 mg/month intravenous ibandronate for 12 months. The patients were evaluated using dual-energy X-ray absorptiometry (DXA), quantitative ultrasound, bone turnover markers, and high-resolution peripheral quantitative computed tomography (HR-pQCT) at baseline and 6 and 12 months after beginning administration. Results: At 12 months after beginning sequential therapy,the bone resorption marker, tartrate-resistant acid phosphatase-5b, decreased by 39.5%, with 82.3% of the patients exhibiting levels within the normal limit. DXA revealed that the BMD of the lumbar spine increased by 3.2%, with 79.0% of the patients exhibiting a response, and 40.3% experiencing an increase in BMD over 5%. HR-pQCT revealed that the cortical thickness of the distal tibia was increased by 2.6%. The cortical area increased by 2.5%, and the buckling ratio (an index of cortical instability) decreased by 2.5%. Most parameters of the trabecular bone showed no significant changes. These changes in the cortical bone were observed in both the distal radius and tibia and appeared beginning 6 months after treatment initiation. Conclusions: Sequential therapy with monthly intravenous ibandronate increased the BMD and improved the cortical bone microstructure of osteoporotic patients who had undergone teriparatide treatment

    Randomized controlled trial of daily teriparatide, weekly high-dose teriparatide, or bisphosphonate in patients with postmenopausal osteoporosis: The TERABIT study

    Get PDF
    Purpose: The effects of daily teriparatide (20 μg) (D-PTH), weekly high-dose teriparatide (56.5 μg) (W-PTH), or bisphosphonates (BPs) on areal bone mineral density (aBMD), bone turnover markers (BTMs), volumetric BMD (vBMD), microarchitecture, and estimated strength were investigated in postmenopausal osteoporosis patients.Methods: The study participants were 131 women with a history of fragility fractures. They were randomized to receive D-PTH, W-PTH, or BPs (alendronate or risedronate) for 18 months. Dual-energy X-ray absorptiometry (DXA), BTMs, and high-resolution peripheral quantitative CT (HR-pQCT) parameters were evaluated at baseline and after 6 and 18 months of treatment. The primary endpoint was the change (%) in cortical thickness (Ct.Th) after 18 months\u27 treatment compared with baseline.Results: DXA showed that D-PTH, W-PTH, and BPs increased lumbar spine aBMD (+12.0%, +8.5%, and +6.8%) and total hip aBMD (+3.0%, +2.1%, and +3.0%), but D-PTH and W-PTH decreased 1/3 radius aBMD (− 4.1%, − 3.0%, − 1.4%) after 18 months. On HR-pQCT, D-PTH increased trabecular vBMD (Tb.vBMD) at the distal radius and tibia after 18 months (+6.4%, +3.7%) compared with the BPs group, decreased cortical volumetric tissue mineral density (Ct.vTMD) (− 1.8%, − 0.9%) compared with the other groups, increased Ct.Th (+1.3%, +3.9%), and increased failure load (FL) (+4.7%, +4.4%). W-PTH increased Tb.vBMD (+5.3%, +1.9%), maintained Ct.vTMD (− 0.7%, +0.2%) compared with D-PTH, increased Ct.Th (+0.6%, +3.6%), and increased FL (+4.9%, +4.5%). The BPs increased Tb.vBMD only in the radius (+2.0%, +0.2%), maintained Ct.vTMD (− 0.6%, +0.3%), increased Ct.Th (+0.5%, +3.4%), and increased FL (+3.9%, +2.8%).Conclusions: D-PTH and W-PTH comparably increased Ct.Th, the primary endpoint. D-PTH had a strong effect on trabecular bone. Although D-PTH decreased Ct.vTMD, it increased Ct.Th and total bone strength. W-PTH had a moderate effect on trabecular bone, maintained Ct.vTMD, and increased Ct.Th and total bone strength to the same extent as D-PTH

    A prospective compound screening contest identified broader inhibitors for Sirtuin 1

    Get PDF
    Potential inhibitors of a target biomolecule, NAD-dependent deacetylase Sirtuin 1, were identified by a contest-based approach, in which participants were asked to propose a prioritized list of 400 compounds from a designated compound library containing 2.5 million compounds using in silico methods and scoring. Our aim was to identify target enzyme inhibitors and to benchmark computer-aided drug discovery methods under the same experimental conditions. Collecting compound lists derived from various methods is advantageous for aggregating compounds with structurally diversified properties compared with the use of a single method. The inhibitory action on Sirtuin 1 of approximately half of the proposed compounds was experimentally accessed. Ultimately, seven structurally diverse compounds were identified

    Building on the Trent Health Lifestyle Survey (young people) - a wider picture

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:98/03865 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    ATP-Induced Conformational Changes of Nucleotide-Binding Domains in an ABC Transporter. Importance of the Water-Mediated Entropic Force

    No full text
    ATP binding cassette (ABC) proteins belong to a superfamily of active transporters. Recent experimental and computational studies have shown that binding of ATP to the nucleotide binding domains (NBDs) of ABC proteins drives the dimerization of NBDs, which, in turn, causes large conformational changes within the transmembrane domains (TMDs). To elucidate the active substrate transport mechanism of ABC proteins, it is first necessary to understand how the NBD dimerization is driven by ATP binding. In this study, we selected MalKs (NBDs of a maltose transporter) as a representative NBD and calculated the free-energy change upon dimerization using molecular mechanics calculations combined with a statistical thermodynamic theory of liquids, as well as a method to calculate the translational, rotational, and vibrational entropy change. This combined method is applied to a large number of snapshot structures obtained from molecular dynamics simulations containing explicit water molecules. The results suggest that the NBD dimerization proceeds with a large gain of water entropy when ATP molecules bind to the NBDs. The energetic gain arising from direct NBD–NBD interactions is canceled by the dehydration penalty and the configurational-entropy loss. ATP hydrolysis induces a loss of the shape complementarity between the NBDs, which leads to the dissociation of the dimer, due to a decrease in the water-entropy gain and an increase in the configurational-entropy loss. This interpretation of the NBD dimerization mechanism in concert with ATP, especially focused on the water-mediated entropy force, is potentially applicable to a wide variety of the ABC transporters
    corecore